الرياضيات الأساسية الأمثلة

Resolver para a 18/(6a-18)-6/(6-6a)=1/(a^2-4a+3)
خطوة 1
حلّل كل حد إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.2
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
ألغِ العامل المشترك.
خطوة 1.2.3
أعِد كتابة العبارة.
خطوة 1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أخرِج العامل من .
خطوة 1.3.2
أخرِج العامل من .
خطوة 1.3.3
أخرِج العامل من .
خطوة 1.4
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
ألغِ العامل المشترك.
خطوة 1.4.2
أعِد كتابة العبارة.
خطوة 1.5
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.5.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.5
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
أخرِج العامل من .
خطوة 3.2.1.1.2
ألغِ العامل المشترك.
خطوة 3.2.1.1.3
أعِد كتابة العبارة.
خطوة 3.2.1.2
أعِد كتابة بالصيغة .
خطوة 3.2.1.3
أخرِج العامل من .
خطوة 3.2.1.4
أخرِج العامل من .
خطوة 3.2.1.5
أعِد ترتيب الحدود.
خطوة 3.2.1.6
ارفع إلى القوة .
خطوة 3.2.1.7
ارفع إلى القوة .
خطوة 3.2.1.8
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.2.1.9
أضف و.
خطوة 3.2.1.10
اضرب في .
خطوة 3.2.1.11
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.11.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.1.11.2
أخرِج العامل من .
خطوة 3.2.1.11.3
ألغِ العامل المشترك.
خطوة 3.2.1.11.4
أعِد كتابة العبارة.
خطوة 3.2.1.12
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.12.1
طبّق خاصية التوزيع.
خطوة 3.2.1.12.2
طبّق خاصية التوزيع.
خطوة 3.2.1.12.3
طبّق خاصية التوزيع.
خطوة 3.2.1.13
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.13.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.13.1.1
اضرب في .
خطوة 3.2.1.13.1.2
انقُل إلى يسار .
خطوة 3.2.1.13.1.3
أعِد كتابة بالصيغة .
خطوة 3.2.1.13.1.4
اضرب في .
خطوة 3.2.1.13.2
اطرح من .
خطوة 3.2.1.14
طبّق خاصية التوزيع.
خطوة 3.2.1.15
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.15.1
اضرب في .
خطوة 3.2.1.15.2
اضرب في .
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
أخرِج العامل من .
خطوة 3.3.1.2
ألغِ العامل المشترك.
خطوة 3.3.1.3
أعِد كتابة العبارة.
خطوة 4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أضف إلى كلا المتعادلين.
خطوة 4.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
أعِد كتابة بالصيغة .
خطوة 4.1.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.2.1
طبّق خاصية التوزيع.
خطوة 4.1.2.2.2
طبّق خاصية التوزيع.
خطوة 4.1.2.2.3
طبّق خاصية التوزيع.
خطوة 4.1.2.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.3.1.1
اضرب في .
خطوة 4.1.2.3.1.2
انقُل إلى يسار .
خطوة 4.1.2.3.1.3
أعِد كتابة بالصيغة .
خطوة 4.1.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 4.1.2.3.1.5
اضرب في .
خطوة 4.1.2.3.2
اطرح من .
خطوة 4.1.2.4
طبّق خاصية التوزيع.
خطوة 4.1.2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.5.1
اضرب في .
خطوة 4.1.2.5.2
اضرب في .
خطوة 4.1.3
اطرح من .
خطوة 4.1.4
أضف و.
خطوة 4.1.5
أضف و.
خطوة 4.1.6
اطرح من .
خطوة 4.2
اطرح من كلا المتعادلين.
خطوة 4.3
اطرح من .
خطوة 4.4
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1.1
أخرِج العامل من .
خطوة 4.4.1.2
أخرِج العامل من .
خطوة 4.4.1.3
أعِد كتابة بالصيغة .
خطوة 4.4.1.4
أخرِج العامل من .
خطوة 4.4.1.5
أخرِج العامل من .
خطوة 4.4.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1.1.1
أخرِج العامل من .
خطوة 4.4.2.1.1.2
أعِد كتابة في صورة زائد
خطوة 4.4.2.1.1.3
طبّق خاصية التوزيع.
خطوة 4.4.2.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 4.4.2.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.4.2.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 4.4.2.2
احذِف الأقواس غير الضرورية.
خطوة 4.5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.6.2
أضف إلى كلا المتعادلين.
خطوة 4.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.7.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.7.2.1
أضف إلى كلا المتعادلين.
خطوة 4.7.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.7.2.2.1
اقسِم كل حد في على .
خطوة 4.7.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.7.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.7.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.7.2.2.2.1.2
اقسِم على .
خطوة 4.8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
استبعِد الحلول التي لا تجعل صحيحة.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: